
User’s
Manual DL850E/DL850EV FreeRun

Application Programming
Interface

IM B8074XW-01EN
1st Edition

i IM B8074XW-01EN

This user’s manual contains useful information about the precautions, functions, and API
specifications of the DL850E/DL850EV series FreeRun Application Programing Interface
(ScAPI.dll).
To ensure correct use, please read this manual thoroughly during operation. Keep this
manual in a safe place for quick reference.
For information about the handling precautions, functions, and operating procedures of
the DL850E/DL850EV series and the handling and operating procedures of Windows,
see the relevant manuals.

Notes
•	 The	contents	of	this	manual	are	subject	to	change	without	prior	notice	as	a	result	

of continuing improvements to the instrument’s performance and functionality. The
figures given in this manual may differ from those that actually appear on your screen.

•	 Every	effort	has	been	made	in	the	preparation	of	this	manual	to	ensure	the	accuracy	
of its contents. However, should you have any questions or find any errors, please
contact your nearest YOKOGAWA dealer.

Trademarks
•	 Windows	7,	Windows	8,	Windows	8.1,	and	Windows	10	are	registered	trademarks	or	

trademarks of Microsoft Corporation in the United States and/or other countries.
•	 In	this	manual,	the	®	and	TM	symbols	do	not	accompany	their	respective	registered	

trademark or trademark names.
•	 Other	company	and	product	names	are	trademarks	or	registered	trademarks	of	their	

respective companies.

Revisions
1st Edition: March 2016

1st Edition: March 2016(YMI)
All Rights Reserved, Copyright © 2016 Yokogawa Meters & Instruments Corporation

iii IM B8074XW-01EN

1

2

3

4

Contents

Chapter 1 Software Overview
1.1 Software Overview ... 1-1

Chapter 2 Notes on Using the Software
2.1 Notes on Using the Software .. 2-1

Chapter 3 FreeRun API Overview
3.1 FreeRun API Overview ... 3-1
3.2 API Overview .. 3-2
3.3 Basic Flow of How to Use the API .. 3-3

Chapter 4 API Functional Specifications
4.1	 Definition	of	Class .. 4-1
4.2	 Definition	of	Constants ... 4-2
4.3	 Detailed	API	Specifications .. 4-3
4.4 DLL Linking Method .. 4-18

1-1IM B8074XW-01EN

Softw
are O

verview

1

2

3

4

1.1 Software Overview

Overview
This software (ScAPI.dll) provides an API (Application Programming Interface) for
acquiring data from the DL850E/DL850EV series in FreeRun mode.

Functions
This software can be used to perform the following functions. For details, see “Detailed
API Specifications.”

•	 Initializing	the	API
•	 Connecting	and	disconnecting	from	the	measurement	instrument
•	 Setting	parameters
•	 Getting	waveform	data

Software Structure
This software package contains the following items.

•	 FreeRun	API	Library	User’s	Manual	(this	manual)
•	 API	files	(see	below)

File Name Content
ScAPI.dll FreeRun API Library
ScAPI64.dll FreeRun API Library 64-bit Version
ScAPI.lib FreeRun API Import Library for C++
ScAPI.h Function Declaration Header File for C++
ScAPINet.dll FreeRun API Library for .NET
tmctl.dll Communication Library
tmctl64.dll Communication Library 64-bit Version
YKMUSB.dll USB Communication Library
YKMUSB64.dll USB Communication Library 64-bit Version

System Requirements
•	 PC

A PC that meets the following conditions is required.
Operating System

Microsoft Windows 7 (SP1 or later), Windows 8, Windows 8.1, or Windows 10
CPU:	Core2Duo	2	GHz	or	better
Memory: At least 1 GB (at least 2 GB recommended)

•	 Development	Environment
Visual Studio 2008 or later, .NET Framework 3.5 or later

Chapter 1 Software Overview

2-1IM B8074XW-01EN

N
otes on U

sing the Softw
are

1

2

3

4

2.1 Notes on Using the Software

Disclaimer
YOKOGAWA assumes no responsibility for any and all damages that may occur directly
or indirectly through the use of this software.

Usage Precautions
•	 This	software	is	a	library	designed	exclusively	for	DL850E/DL850EV	series	FreeRun	

mode. It cannot be used with other products.

•	 Check	the	version	of	this	software	and	the	firmware	version	of	the	DL850E/DL850EV	
prior to use.

Chapter 2 Notes on Using the Software

3-1IM B8074XW-01EN

FreeR
un A

PI O
verview

1

2

3

4

3.1 FreeRun API Overview

The API is provided as a dynamic link library (DLL). The API can be used by linking user
applications with this DLL.
As shown in the following figure, the API provides functions for acquiring waveform
data from the DL850E/DL850EV running in FreeRun mode and setting measurement
conditions.

ScAPI.dll

DL850Series

User Application

PC(Windows)

Transfer

Call

Waveform

tmctl.dll

ScAPINet.dll

YKMUSB.dll

Chapter 3 FreeRun API Overview

3-2 IM B8074XW-01EN

3.2 API Overview

This section provides an overview of the API.

Initialization and Termination
The	API	functions	for	initialization	and	termination	are	as	follows.
API Name Function Page
ScInit Initialize	the	API 4-3
ScExit End the API 4-3

Connection and Disconnection
The API functions for connecting and disconnecting from the measurement instrument are as follows.
API Name Function Page
ScOpenInstrument Open an instrument and get the API handle 4-4
ScCloseInstrument Close the instrument 4-4

Getting or Setting Measurement Conditions
The API functions for getting and setting measurement conditions are as follows.
API Name Function Page
ScSetControl Send a command to the instrument 4-5
ScGetControl Receive a command response from the instrument 4-5
ScQueryMessage Send a command and receive a response 4-7
ScGetBinaryData Receive binary data 4-6
ScSetSamplingRate Set the sampling rate 4-12
ScGetSamplingRate Get the sampling rate 4-12
ScGetBaseSamplingRate Get the base sampling rate 4-12
ScGetChannelSamplingRatio Get the sampling ratio from the base sampling rate 4-13
ScStart Start measurement 4-8
ScStop Stop measurement 4-8

Getting FreeRun Information
The API functions for getting FreeRun information are as follows.
API Name Function Page
ScGetLatchCount Get the sample count from the LATCH position 4-9
ScGetLatchIntervalCount Get the sample count from the previous LATCH position 4-9
ScGetChannelDelay Get the phase difference of the channel 4-11
ScGetStartTime Get the measurement start time and date 4-11
ScChannelBits Get the data bit count of the channel 4-13
ScGetChannelGain Get the gain value of the channel (used to convert waveform data into actual

data)
4-14

ScGetChannelOffset Get the offset value of the channel (used to convert waveform data into actual
data)

4-14

ScSetDataReadyCount Set the data count for the DataReady event 4-15
ScGetDataReadyCount Get the data count for the DataReady event 4-15
ScAddEventListener Add an event listener (C++ only) 4-16
ScRemoveEventListener Delete the event listener (C++ only) 4-16
ScAddCallback Add a call back method (C# only) 4-17
ScRemoveCallback Delete the call back method (C# only) 4-17

Getting Waveform Data
The API functions for getting FreeRun waveform data are as follows.
API Name Function Page
ScLatchData Latch the measurement position 4-8
ScGetLatchAcqData Get waveform data after latching 4-10

3-3IM B8074XW-01EN

FreeR
un A

PI O
verview

1

2

3

4

3.3 Basic Flow of How to Use the API

Each API function is used through a handle. First, a handle is created when an
instrument is opened. Then, the target instrument is accessed by passing the handle as
a parameter.

event listener*1

start

begin use API
ScInit()

Connect to DL850
ScOpenInstrument()

add event listener
ScAddEventListener

set parameter
ScSetControl() /

ScQueryMessage()

start acquisition
ScStart()

read wave data? user
program

disconnect to instrument
ScCloseInstrument()

end of using API
ScExit()

end

receive Event
handleEventScDataReady()

LATCH action
ScLatchData()

get wave data
ScGetLatchAcqData()

user program

stop acquisition
ScStop

LATCH action
ScLatchData()

get wave data
ScGetLatchedAcqData()

[No]

[Yes]

1) In the case of .NET, use the callback method.

3-4 IM B8074XW-01EN

Unmanaged Application
The basic flow of how to use the API and a sample code for C++ (unmanaged
application) are provided below. Error procedures are omitted.

1.	 Initialize	the	API	(required).	

#include “ScAPI.h”

. . .

ScInit();

. . .

2. Open the instrument (DL850E/DL850EV) and create a handle (required).
 After opening the instrument, use this handle to access the instrument.

ScHandle handle;

ScOpenInstrument(SC_WIRE_USB,“91K225903”,&handle);

3. Add an event listener.
 To use data ready events, create a class that inherits the ScEventListener class, and

register it to the API. Overwriting the handleEventScDataReady() method causes
the same method to be called when a data ready event occurs. Creating and adding
an event listener is not a requirement. (Waveform acquisition is possible also by
periodically calling a waveform acquisition procedure.)

class cYourClass : public ScEventListener {

public:

 virtual void handleEventScDataReady(ScHandl handle,

 __int64 dataCount);

};

. . .

cYourClass* yourClass = new cYourClass();

ScAddEventListener(handle, yourClass);

4. Start measuring

ScStart(handle);

5. Latch (required to acquire waveforms).
 This marks the acquisition position of the waveform data.

ScLatchData(handle);

6. Get the waveform.

char buff[100000];

ScGetLatchAcqData(handle, 1, 0, buff, sizeof(buff), &count, &dataSize);

. . .

7. Disconnect from the instrument (required).
 The handle is invalidated when this API function is called.

ScCloseInstrument(handle);

8. Close the API (required).

ScExit();

3.3 Basic Flow of How to Use the API

3-5IM B8074XW-01EN

FreeR
un A

PI O
verview

1

2

3

4

Managed Application
The basic flow of how to use the API and a sample code for C# (managed application)
are provided below. Error procedures are omitted.

1.	 Initialize	the	API	(required).
	 Add	ScAPINet.dll	to	References	of	the	Visual	Studio	Solution	Explorer	in	advance.	

The name space is ScAPINet, and the API is defined as methods in the ScAPI class.

using ScAPINet;

. . .

ScAPI api = new ScAPINet.ScAPI();

api.ScInit();

2. Open the instrument (DL850E/DL850EV) and create a handle (required).
 After opening the instrument, use this handle to access the instrument.

int handle;

api.ScOpenInstrument(ScAPI.SC_WIRE_USB,“91K225903”,out handle);

3. Add an event callback method.
 To use data ready events, add a callback method to the API. The same method will be

called when data ready events occur. Creating and adding a callback method is not a
requirement. (Waveform acquisition is possible also by periodically calling a waveform
acquisition procedure.)

private void dataReadyCallback(int hndl, int type)

{

 . . .

}

api.ScAddCallback(hndl, dataReadyCallback);

4. Start measuring

api.ScStart(handle);

5. Latch (required to acquire waveforms).
 This marks the acquisition position of the waveform data.

api.ScLatchData(handle);

6. Get the waveform.

byte[] buff = new byte[100000];

int count, dataSize;

api.ScGetLatchAcqData<byte>(handle, 1, 0, buff, buff.Length,

out count, out dataSize);

7. Disconnect from the instrument (required).
 The handle is invalidated when this API function is called.

api.ScCloseInstrument(handle);

8. Close the API (required).

api.ScExit();

3.3 Basic Flow of How to Use the API

4-1IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

Chapter 4 API Functional Specifications

4.1 Definition of Class

This	section	explains	the	API	class	definitions.

Class ScEventListener
Function:

Event listener class for receiving events (C++ only)

Syntax:
class ScEventListener {

public:

virtual void handleEventScDataReady(ScHandle handle,

__int64 dataCount);

};

Detail:
To receive data ready events, override the handleEventScDataReady() method. Use
ScAddEventListener() to create instances.

4-2 IM B8074XW-01EN

4.2 Definition of Constants

SC_SUCCESS
Description:

Success

Syntax:
[C++] #define SC_SUCCESS 0
[C#] ScAPI.SC_SUCCESS

Detail:
Definition of a result returned by API functions

SC_ERROR
Description:

Error

Syntax:
[C++] #define SC_ERROR 1
[C#] ScAPI.SC_ERROR

Detail:
Definition of a result returned by API functions

SC_WIRE_USB
Description:

USB wire type (USBTMC)

Syntax:
[C++] #define SC_WIRE_USB 7
[C#] ScAPI.SC_WIRE_USB

Detail:
Definition of a wire type for connecting to the DL850 series

SC_WIRE_LAN
Description:

LAN wire type (VXI-11)

Syntax:
[C++] #define SC_WIRE_LAN 8
[C#] ScAPI.SC_WIRE_LAN

Detail:
Definition of a wire type for connecting to the DL850 series

4-3IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

4.3 Detailed API Specifications

This section provides the details of the API.

ScInit
Description:

Initialize	the	API

Syntax:
[C++] ScResult ScInit(void);
[C#] int ScInit();

Parameters:
None

Return value:
SC_SUCCESS Success
SC_ERROR	 	 Initialization	error	(already	initialized)

Detail:
Call once at the start of using the library.

Example [C++]:
#include “ScAPI.h”

...

if (ScInit() == SC_SUCCESS) {

...

}

Example [C#]:
using ScAPINet;

...

ScAPINet.ScAPI api = new ScAPINet.ScAPI();

if (api.ScInit() == ScAPI.SC_SUCCESS)

{

...

}

ScExit
Description:

End using the API

Syntax:
[C++]	 ScResult	ScExit(void);
[C#]	 int	ScExit();

Parameters:
None

Return value:
SC_SUCCESS Success
SC_ERROR	 	 Error	(already	terminated	or	not	initialized)

Detail:
Call once at the end of using the API.

4-4 IM B8074XW-01EN

4.3 Detailed API Specifications

ScOpenInstrument
Description:

Open the instrument

Syntax:
[C++] ScResult ScOpenInstrument(int wire, char* address, ScHandle* rHndl);
[C#] int ScOpenInstrument(int wire, string address, out int rHndl);

Parameters:
[IN] wire Wire type
 SC_WIRE_USB USBTMC connection
 SC_WIRE_LAN VXI-11
[IN] address Connection destination address (instrument serial number for USB)
[OUT] rHndl Instrument handle

Return value:
SC_SUCCESS Connection successful
SC_ERROR Connection error

Detail:
Connects to the instrument and returns the instrument handle.
Each API passes this handle to communicate with the instrument.
When a connection is established, the instrument is automatically set to FreeRun mode.

Note:
Multiple connections to a single instrument is not possible.

Example [C++]:
ScHandle hndl;
if (ScOpenInstrument(SC_WIRE_USB, “91K225895”, &hndl)

== SC_SUCCESS) {
...

}

Example [C#]:
int hndl;
if (api.ScOpenInstrument(ScAPI.SC_WIRE_USB, “91K225895”,

out hndl) == ScAPI.SC_SUCCESS)
{

...
}

ScCloseInstrument
Description:

Close the instrument

Syntax:
[C++] ScResult ScCloseInstrument(ScHandle hndl);
[C#] int ScCloseInstrument(int hndl);

Parameters:
[IN] handle Instrument handle

Return value:
SC_SUCCESS Success
SC_ERROR Error (not connected or already disconnected)

Detail:
Disconnects from the instrument connected using ScOpenInsturument().
When disconnecting, the instrument is automatically changed from FreeRun mode back
to trigger mode.

Note:
The handle is invalidated when this API method is called.

4-5IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

4.3 Detailed API Specifications

ScSetControl
Description:

Send a command

Syntax:
[C++] ScResult ScSetControl(ScHandle hndl, char* command);
[C#] int ScSetControl(int hndl, string command);

Parameters:
[IN] hndl Instrument handle
[IN] command Communication command string

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Send a command to the instrument

Note:
The return value cannot be used to determine communication command errors. It only
indicates whether the command was sent successfully.

ScGetControl
Description:

Receive a response to a communication command

Syntax:
[C++] ScResult ScGetControl(ScHandle hndl, char* buff, int buffLen, int* receiveLen);
[C#] int ScGetControl<DT>(int hndl, ref DT[] buff, int buffLen, out int receiveLen);

Parameters:
[IN] hndl Instrument handle
[OUT] buff Receive buffer
[IN]	buffLen	 Buffer	size
[OUT] receiveLen Length of the received response

Return value:
SC_SUCCESS Success
SC_ERROR Error (no data to be received)

Detail:
Receives a response to a communication command sent in advance from the instrument.

Note:
An error occurs if a communication command has not been sent in advance.

Example [C++]:
char buff[BUFSIZ];

int receiveLen;

if (ScGetControl(hndl, buff, sizeof(buff), &receiveLen)

== SC_SUCCESS) {

...

}

Example [C#]:
byte[] buff = new byte[256];

int receiveLen;

if (api.ScGetControl<byte>(hndl, ref buff, buff.Length,

out receiveLen) == ScAPI.SC_SUCCESS)

{
string msg = System.Text.Encoding.ASCII.GetString(buff);

printMessage(msg);
}

4-6 IM B8074XW-01EN

ScGetBinaryData
Description:

Receive binary data

Syntax:
[C++] ScResult ScGetBinaryData(ScHandle hndl, char* command, char* buff, int

buffLen, int* receiveLen);
[C#] int ScGetBinaryData<DT>(int hndl, string command, DT[] buff, int buffLen, out int

receiveLen);

Parameters:
[IN] hndl Instrument handle
[IN] command Communication command for requesting binary data
[IN] buff Buffer for receiving binary data
[IN]	buffLen	 Size	of	the	buffer	for	receiving	binary	data	(bytes)
[OUT]	receiveLen	 Size	of	the	received	binary	data	(bytes)

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Sends a command for querying binary data and receives the response.

Note:
The behavior when a command that does not send binary data is specified is undefined.

Example [C++]:
char buff[1024];

int receiveLen;

if (ScGetBinaryData(hndl, “:MONitor:SEND:ALL?”,

buff, sizeof(buff), &receiveLen)== SC_SUCCESS) {

...

}

Example [C#]:
byte[] buff = new byte[1024];

int receiveLen;

if (api.ScGetBinaryData<byte>(hndl, “:MONitor:SEND:ALL?”,

ref buff, buff.Length, out receiveLen) == ScAPI.SC_SUCCESS)

{

...

}

4.3 Detailed API Specifications

4-7IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

ScQueryMessage
Description:

Send a command and receive its response

Syntax:
[C++] ScResult ScQueryMessage(ScHandle hndl, char* command, char* buff, int

buffLen, int* receiveLen);
[C#] int ScQueryMessage(int hndl, string command, out string buff, int getLen, out int

receiveLen);

Parameters:
[IN] hndl Instrument handle
[IN] command Communication Commands
[OUT] buff Receive buffer
[IN] buffLen Length of receive buffer (bytes). The length of data to receive in the

case of the .NET version.
[OUT] receiveLen Length of the received response

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
You can perform communication command transmission and response reception with
this single API method.

Note:
You cannot use this API method for commands that do not return responses.
In the case of C# (.NET version), specify the number of bytes to receive, not the receive
buffer	size,	in	the	fourth	parameter.

Example [C#]:
char buff[256];

int receiveLen;

if (ScQueryMessage(hndl, “*idn?”, buff, sizeof(buff), &receiveLen)

== SC_SUCCESS) {

...

}

Example [C#]:
string buff;

int receiveLen;

if (api.ScQueryMessage(hndl, “*idn?”, out buff, 256,

out receiveLen) == ScAPI.SC_SUCCESS)

{

...

}

4.3 Detailed API Specifications

4-8 IM B8074XW-01EN

ScStart
Description:

Start measurement

Syntax:
[C++] ScResult ScStart(ScHandle hndl)
[C#] int ScStart(int hndl)

Parameters:
[IN] hndl Instrument handle

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Starts measurement. (Sends a Start command.)

ScStop
Description:

Stop measurement

Syntax:
[C++] ScResult ScStop(ScHandle hndl)
[C#] int ScStop(int hndl)

Parameters:
[IN] hndl Instrument handle

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Stops measurement. (Sends a Stop command.)

ScLatchData
Description:

Latch FreeRun data

Syntax:
[C++] ScResult ScLatchData(ScHandle hndl)
[C#] int ScLatchData(int hndl)

Parameters:
[OUT] hndl Instrument handle

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Marks the present measurement position of the FreeRun measurement data in the
instrument.
This position is used as a reference for getting measured data.

4.3 Detailed API Specifications

4-9IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

ScGetLatchCount
Description:

Get the sample count from the LATCH position

Syntax:
[C++] ScResult ScGetLatchCount(ScHandle hndl, __int64* count)
[C#] int ScGetLatchCount(int hndl, out long count)

Parameters:
[IN] hndl Instrument handle
[OUT] count Latch position (sample count)

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the latch position.
The latch position is the sample count from when a measurement is started to the
position	where	latching	is	executed	with	ScLatchData().

Note:
The sample count is the number of data points acquired using a 2-channel module,
regardless of whether a 2-channel module is actually used.

ScGetLatchIntervalCount
Description:

Get the sample count between latches

Syntax:
[C++] ScResult ScGetLatchIntervalCount(ScHandle hndl, __int64* count)
[C#] int ScGetLatchIntervalCount(int hndl, out long count)

Parameters:
[IN] hndl Instrument handle
[OUT] count Sample count between latches

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Get the sample count from the previous LATCH position

Note:
The sample count between latches is the number of data points acquired using a
2-channel module, regardless of whether a 2-channel module is actually used.

4.3 Detailed API Specifications

4-10 IM B8074XW-01EN

ScGetLatchAcqData
Description:

Get latched measurement data

Syntax:
[C++] ScResult ScGetLatchAcqData(ScHandle hndl, int chNo, int subChNo, char*

buff,int	buffLen,	int*	dataCount,	int*	dataSize);
[C#] int ScGetLatchAcqData<DT>(int hndl, int chNo, int subChNo, DT[] buff, int

buffLen,	out	int	dataCount,	out	int	dataSize)

Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] buff Save buffer
[IN] buffLen Length of save buffer
[OUT] dataCount Length of saved data (sample count)
[OUT]	dataSize	 Size	of	a	point	of	data	saved	(bytes)

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets latched measurement data.

Note:
The returned measurement data is an AD value.
To convert this into a physical value, multiply the returned value by the gain obtained by
ScGetChannelGain() and add the offset obtained by ScGetChannelOffset().

Example [C++]:
char buff[100000];

int count;

int size;

if (ScGetLatchAcqData(hndl, 1, 0, buff, sizeof(buff),

&count, &size) == SC_SUCCESS) {

...

}

Example [C#]:
byte[] buff = new byte[100000];

int count;

int size;

if (api.ScGetLatchAcqData<byte>(hndl, 1, 0, buff, buff.Length,

out count, out size)== ScAPI.SC_SUCCESS)

{

...

}

4.3 Detailed API Specifications

4-11IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

ScGetChannelDelay
Description:

Get the phase difference of the channel

Syntax:
[C++] ScResult ScGetChannelDelay(ScHandle hndl, int chNo, int* delay)
[C#] int ScGetChannelDelay(int hndl, int chNo, out int delay)

Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[OUT] delay Phase difference

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the phase difference of the channel.
If the target channel has sub channels, phase difference may occur according to the
sample rate ratio.
This API method returns the phase difference sample count.

Note:
The phase difference between sub channels of a multi-channel module is the same.

ScGetStartTime
Description:

Get the measurement start time and date

Syntax:
[C++] ScResult ScGetStartTime(ScHandle hndl, char* buff);
[C#] int ScGetStartTime(int hndl, out string buff)

Parameters:
[IN] hndl Instrument handle
[OUT] buff Measurement start time string

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the measurement start time as a character string.
The time is returned as a comma separated character string.
Year (2007 or later), month (1 to 12), day (1 to 32), hour (0 to 23), minute (0 to 59),
second (0 to 59), microsecond (0 to 999999), nanosecond (10 to 990)

Note:
If this method is called when measurement is stopped, the time the previous
measurement was started is returned.

4.3 Detailed API Specifications

4-12 IM B8074XW-01EN

ScSetSamplingRate
Description:

Set the sampling frequency

Syntax:
[C++] ScResult ScSetSamplingRate(ScHandle hndl, double srate);
[C#] int ScSetSamplingRate(int hndl, double srate)

Parameters:
[IN] hndl Instrument handle
[IN]	srate	 Sampling	frequency	(Hz)

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Sets the sampling frequency.

Note:
This cannot be set while measurement is in progress.

ScGetSamplingRate
Description:

Get the sampling frequency

Syntax:
[C++] ScResult ScGetSamplingRate(ScHandle hndl, double* srate)
[C#] int ScGetSamplingRate(int hndl, out double srate)

Parameters:
[IN] hndl Instrument handle
[OUT] srate Sampling frequency

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the sampling frequency.

ScGetBaseSamplingRate
Description:

Get the base sampling frequency

Syntax:
[C++] ScResult ScGetBaseSamplingRate(ScHandle hndl, double* srate)
[C#] int ScGetBaseSamplingRate(int hndl, out double srate)

Parameters:
[IN] hndl Instrument handle
[OUT] srate Sampling frequency

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the base sampling frequency (sampling frequency of a 2-channel module).

4.3 Detailed API Specifications

4-13IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

ScGetChannelSamplingRatio
Description:

Get the ratio of the base sampling frequency to the channel’s sampling frequency.

Syntax:
[C++] ScResult ScGetChannelSamplingRatio(ScHandle hndl, int chNo, int* ratio)
[C#] int ScGetChannelSamplingRatio(int hndl, int chNo, out int ratio)

Parameters:

[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 16)
[OUT] ratio Sampling frequency ratio (1 to 1000)

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Get the ratio of the base sampling frequency to the channel’s sampling frequency.
If the channel’s sampling frequency is the same as the base sampling frequency, the
ratio is 1. If it is half, the ratio is 2.
For a channel with sub channels, the sampling frequency may be lower than the base
sampling frequency (sampling frequency of a 2-channel model). Likewise, the sample
count is lower according to the ratio.

ScGetChannelBits
Description:

Get the channel’s data bit length.

Syntax:
[C++] ScResult ScGetChannelBits(ScHandle hndl, int chNo, int subChNo, int* bits);
[C#] int ScGetChannelBits(int hndl, int chNo, int subChNo, out int bits)

Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 16)
[IN] subChNo Sub channel number (1 to 64)
[OUT] bits Data bit length (1 to 32)

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the bit length of the channel data to be acquired.

Note:
For CAN modules and the like, the returned value may not necessarily be the same as
the number of bits specified with Bit Cnt.

4.3 Detailed API Specifications

4-14 IM B8074XW-01EN

ScGetChannelGain
Description:

Get the channel gain

Syntax:
[C++] ScResult ScGetChannelGain(ScHandle hndl, int chNo, int subChNo, double* gain);
[C#] int ScGetChannelGain(int hndl, int chNo, int subChNo, out double gain)

Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 16)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[OUT] gain Gain

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the gain used to convert acquired measurement data into physical values.

ScGetChannelOffset
Description:

Get the channel’s data offset.

Syntax:
[C++] ScResult ScGetChannelOffset(ScHandle hndl, int chNo, int subChNo, double*

offset);
[C#] int ScGetChannelOffset(int hndl, int chNo, int subChNo, out double offset)

Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 16)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[OUT] offset Offset

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the offset used to convert acquired measurement data into physical values.

4.3 Detailed API Specifications

4-15IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

ScSetDataReadyCount
Description:

Set the measurement count used to raise a DataReady event.

Syntax:
[C++] ScResult ScSetDataReadyCount(ScHandle hndl, int sampleCount)
[C#] int ScSetDataReadyCount(int hndl, int sampleCount)

Parameters:

[IN] hndl Instrument handle
[IN] sampleCount Sample count

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
During FreeRun measurement, it is possible to raise a data ready event every time a
given number of points is measured.
Set the measurement count used to raise DataReady events.
If the count is set to the same value as the sampling frequency (100,000 if the sampling
frequency	is	100	kHz),	an	event	occurs	every	second.

ScGetDataReadyCount
Description:

Get the measurement count used to raise a DataReady event.

Syntax:
[C++] ScResult ScGetDataReadyCount(ScHandle hndl, int* sampleCount)
[C#] int ScGetDataReadyCount(int hndl, out int sampleCount)

Parameters:
[IN] hndl Instrument handle
[OUT] sampleCount Sample count

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Gets the measurement count used to raise DataReady events.

4.3 Detailed API Specifications

4-16 IM B8074XW-01EN

ScAddEventListener
Description:

Add an event listener

Syntax:
[C++] ScResult ScAddEventListener(ScHandle hndl, ScEventListener* listener)

Parameters:
[IN] hndl Instrument handle
[IN] listener Pointer to the event listener class

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
A class that inherits the ScEventListener can be added as an event listener class.
Overwriting handleEventScDataReady() causes the same method to be called
automatically when a data ready event occurs.

Note:
Currently the only event that can be acquired is the data ready event.
The dataCount parameter that is passed when handleEventScDataReady() is called is
the previous value.
This cannot be used with the .NET version (C#).

Example:
class cMyEvent : public ScEventListener {

public:

virtual void handleEventScDataReady(ScHandle hndl,

__int64 dataCount);

};

cMyEvent* ep = new cMyEvent();

ScAddEventListener(hndl, ep);

ScRemoveEventListener
Description:

Delete the event listener

Syntax:
[C++] ScResult ScRemoveEventListener(ScHandle hndl, ScEventListener* listener);

Parameters:
[IN] hndl Instrument handle
[IN] listener Pointer to the event listener class

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Deletes a registered event listener.

Note:
An error will occur if you specify an event listener that has not been added.
This cannot be used with the .NET version (C#).

4.3 Detailed API Specifications

4-17IM B8074XW-01EN

A
PI Functional Specifications

1

2

3

4

ScAddCallback
Description:

Add a call back method (C# only)

Syntax:
[C#] public delegate void ScCallback(int hndl, int type)
 int ScAddCallback(int hndl, ScCallback func)

Parameters:
[IN] hndl Instrument handle
[IN] func Callback method

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Adds a callback method that is called when data ready events occur.

Note:
Currently the only event that can be acquired is the data ready event.
This cannot be used with C++.
The event type is passed through the type parameter of the callback method, but it is
currently not used.
Example:
private void dataReadyCallback(int hndl, int type)

{

....

}

if (api.ScAddCallback(hndl, dataReadyCallback) != ScAPI.SC_SUCCESS)

{

// error

}

ScRemoveCallback
Description:

Delete the call back method (C# only)

Syntax:
[C#] int ScRemoveCallback(int hndl, ScCallback func)

Parameters:
[IN] hndl Instrument handle
[IN] func Callback method

Return value:
SC_SUCCESS Success
SC_ERROR Error

Detail:
Adds a callback method that is called when data ready events occur.

Note:
This cannot be used with C++.

4.3 Detailed API Specifications

4-18 IM B8074XW-01EN

4.4 DLL Linking Method

For C++, only implicit linking is currently assumed for DLL linking.
To use the API through implicit linking, specify and link to the import library (.lib file), and
call the API in the same manner as calling normal functions.

In	addition,	place	the	following	DLLs	in	the	same	folder	as	the	application	(exe)	that	you	
create.

Project C++ (Unmanaged
Application)

C# (Managed Application)

Architecture 32 bit 64 bit 32 bit 64 bit Any CPU
ScAPI.dll ü ü ü
ScAPI64.dll ü ü ü
ScAPINet.dll ü ü ü
tmctl.dll ü ü ü
tmctl64.dll ü ü ü
YKMUSB.dll ü ü ü
YKMUSB64.dll ü ü ü

	Contents
	Chapter 1	Software Overview
	1.1	Software Overview

	Chapter 2	Notes on Using the Software
	2.1	Notes on Using the Software

	Chapter 3 FreeRun API Overview
	3.1 FreeRun API Overview
	3.2	API Overview
	3.3	Basic Flow of How to Use the API

	Chapter 4	API Functional Specifications
	4.1	Definition of Class
	4.2	Definition of Constants
	4.3	Detailed API Specifications
	4.4	DLL Linking Method

